Supplement to the 2020 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

PHYSICAL (PHY.1)	MCL (UNITS)	WELL #2A	WELL #5	WELL #6	WELL #7	WELL #8
Turbidity	5	ND	1.5	ND	ND	4.2
Color	15	ND	7	ND	ND	ND
Odor	3	ND	ND	ND	ND	ND
Temperature	Deg. C.	15	14	14	14	14
	Ü	WELL	WELL	WELL	WELL	WELL
INORGANIC	MCL	#2A	#5	#6	#7	#8
(IOC. 1,2,3)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Antimony	0.006	ND	ND	ND	ND	ND
Arsenic	0.000	ND	ND	ND	ND	ND
Barium	2.0	0.027	0.5	0.049	0.013	0.061
	0.004	ND	ND	ND	ND	ND
Beryllium Cadmium	0.004	ND	ND	ND	ND	ND
	0.003 N/A	22.2	29.7	27.7	25.6	32.6
Calcium	250	62	127	39.5	31	70.9
Chloride	0.10	ND	ND	ND	ND	ND
Chromium	1.3	0.045	0.43	ND	0.014	0.014
Copper	2.2	ND	ND	0.14	ND	ND
Fluoride	0.2	ND	ND	0.1 4 ND	ND	ND
Free Cyanide	0.2	ND	0.2025	0.053	0.061	0.15
Iron		ND	0.2025 ND	ND	ND	ND
Lead	0.015	11.4	13.9	13.2	12.5	18.4
Magnesium	N/A	ND	0.022	0.24	0.012	ND
Manganese	0.3	ND ND		0.2 4 ND	0.012 ND	ND
MBAS	N/A		ND ND	ND	ND	ND
Mercury	0.002	ND 0.0038	0.00062	0.0026	0.00068	0.0011
Nickel	N/A	0.0028 ND	0.00062 ND	0.0026 ND	0.00008 ND	ND
Selenium	0.05		ND ND	ND	ND	ND
Silver	0.1	ND		13.8	14.9	17
Sodium	See Notes	18.9 25.7	18.5 12.3	49.5	27.1	52.4
Sulfate	250			49.5 ND	ND	52.4 ND
Thallium	0.002	ND	ND	ND ND	ND	ND
Zinc	5.0	ND	0.024	ND ND	ND	ND
Ammonia	N/A	ND	ND	ND 0.94	1.2	4.2
Nitrates	10	2.9	0.099		ND	4.2 ND
Nitrites	1	ND	ND	ND	ND ND	ND ND
Perchlorate	See Notes	3.6	ND	ND	ND	ND
CORROSIVITY (CO	R.1)					
Calcium Hardness		55.4	74.2	69.2	63.9	81.4
Langelier Index		-2.08	-1.96	-1.93	-2.04	-1.87
PH		6.7	7	6.5	6.9	6.6
Total Alkalinity		50.5	51.5	76.5	77.5	60.5
Disssolved Solids		194	190	233	167	308
Total Hardness		102	131	124	115	157

NOTES:

Sodium:

The New York State Department of Health recommends that Sodium not exceed 20 mg/L for severly restricted sodium diets and 270 mg/L for moderately restricted sodium diets.

Perchlorate:

The Primary Action Level is 18 ppb. If a well exceeds the Primary Action Level, the supplier must perform public notification and the well must be taken out of service or appropriate steps (such as blending) must be taken to assure the safety of the public's health.

The Secondary Action Level is 5 ppb. If a well exceeds the Secondary Action Level, State notification is required and the well must be monitored quarterly and operated to reduce the discharge of perchlorate into the distribution system.

Supplement to the 2020 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

PHYSICAL (PHY.1)	MCL (UNITS)	WELL #9	WELL #10A	WELL #11A	WELL #12	WELL #13	WELL #14
Turbidity	5	1.2	ND	2.1	ND	ND	ND
Color	15	ND	ND	7	ND	11	ND
Odor	3	ND	ND	ND	ND	ND	ND
Temperature	Deg. C.	16	13	15	15	16	16
		WELL	WELL	WELL	WELL	WELL	WELL
INORGANIC	MCL	#9	#10A	#11A	#12	#13	#14
(IOC. 1,2,3)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Antimony	0.006	ND	ND	ND	ND	ND	ND
Arsenic	0.010	ND	ND	ND	ND	ND	ND
Barium	2.0	0.38	0.19	0.02	0.013	0.018	0.019
Beryllium	0.004	ND	ND	ND	ND	ND	ND
Cadmium	0.005	ND	ND	ND	ND	ND	ND
Calcium	N/A	29.6	16	16.3	25.2	32.9	24.6
Chloride	250	92.8	27.7	10.9	54.9	109	60.7
Chromium	0.10	ND	ND	ND	ND	ND	ND
Copper	1.3	ND	0.0031	ND	0.0083	0.0042	0.0044
Fluoride	2.2	ND	ND	ND	ND	0.12	ND
Free Cyanide	0.2	ND	ND	ND	ND	ND	ND
ron	0.3	0.046	ND	0.24	ND	ND	ND
Lead	0.015	ND	ND	ND	ND	ND	ND
Magnesium	N/A	14	9.1	8.1	15.7	20.5	15.1
Manganese	0.3	ND	ND	0.01	ND	ND	ND
MBAS	N/A	ND	ND	ND	ND	ND	ND
Mercury	0.002	ND	ND	ND	ND	ND	ND
Nickel	N/A	0.00059	0.00056	0.00052	ND	ND	0.0006
Selenium	0.05	ND	ND	ND	ND	ND	ND
Silver	0.1	ND	ND	ND	ND	ND	ND
Sodium	See Notes	30.7	9.4	6	17	28.7	19.1
Sulfate	250	32.1	21.7	19.2	21.9	26.2	27.5
Thallium	0.002	ND	ND	ND	ND	ND	ND
Zinc	5.0	ND	0.03	ND	ND	ND	ND
Ammonia	N/A	ND	ND	ND	ND	ND	ND
Nitrates	10	2.3	2.2	1.4	3.2	3.2	2.4
Nitrites	1	ND	ND	ND	ND	ND	ND
Perchlorate	See Notes	3.6	ND	ND	ND	ND	ND
CORROSIVITY (CO	R.1)						
Calcium Hardness		73.9	40	40.7	62.9	82.2	61.4
Langelier Index		-1.9	-2.33	-2.16	-2.23	-1.59	-2.04
PH		6.4	6.9	6.9	6.8	6.7	6.4
Total Alkalinity		68	53.4	53.4	49.1	61.1	57.8
Disssolved Solids		267	194	98	199	256	195
Total Hardness		132	77.3	73.9	128	167	124

NOTES:

Sodium:

The New York State Department of Health recommends that Sodium not exceed 20 mg/L for severly restricted sodium diets and 270 mg/L for moderately restricted sodium diets.

Perchlorate:

The Primary Action Level is 18 ppb. If a well exceeds the Primary Action Level, the supplier must perform public notification and the well must be taken out of service or appropriate steps (such as blending) must be taken to assure the safety of the public's health.

The Secondary Action Level is 5 ppb. If a well exceeds the Secondary Action Level, State notification is required and the well must be monitored quarterly and operated to reduce the discharge of perchlorate into the distribution system.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

PESTICIDES AND HERBICIDES	MCL	WELL #2A	WELL #5	WELL #6	WELL #7	WELL #8
(SOC. 1,2)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Alachlor	2.0	ND	ND	ND	ND	N/A
Aldicarb	3.0	ND	ND	ND	ND	N/A
Aldicarb Sulfoxide	4.0	ND	ND	ND	ND	N/A
Aldicarb Sulfone	2.0	ND	ND	ND	ND	N/A
Atrazine	3.0	ND	ND	ND	ND	N/A
Carbofuran	40.0	ND	ND	ND	ND	N/A
Chlordane	2.0	ND	ND	ND	ND	N/A
DBCP or 1,2-Dibromo-3-chloropropane	0.2	ND	ND	ND	ND	N/A
2,4-D	50.0	ND	ND	ND	ND	N/A
Endrin	2.0	ND	ND	ND	ND	N/A
1,2- Dibromoethane	0.05	ND	ND	ND	ND	N/A
Heptachlor	0.4	ND	ND	ND	ND	N/A
Heptachlor Expoxide	0.2	ND	ND	ND	ND	N/A
Lindane	0.2	ND	ND	ND	ND	N/A
Methoxychlor	40.0	ND	ND	ND	ND	N/A
Pentachlorophenol	1.0	ND	ND	ND	ND	N/A
Toxaphene	3.0	ND	ND	ND	ND	N/A
2,4,5-TP (Silvex)	10.0	ND	ND	ND	ND	N/A
3-Hydroxycarbofuran	50.0	ND	ND	ND	ND	N/A
Aldrin	5.0	ND	ND	ND	ND	N/A
Benzo (a) pyrene	0.2	ND	ND	ND	ND	N/A
Bis-(2-ethylhexyl) adipate	50.0	ND	ND "	ND	ND	N/A
Bis-(2-ethylhexyl) phthalates	6.0	ND	ND	ND	ND	N/A
Butachlor	50.0	ND	ND	ND	ND	N/A
Carbaryl	50.0	ND	ND	ND	ND	N/A
Dalapon	50.0	ND	ND	ND	ND	N/A
Dicamba	50.0	ND	ND	ND	ND	N/A
Dieldrin	5.0	ND	ND	ND	ND	N/A
Dinoseb	7.0	ND	ND	ND	ND	N/A
Diquat	20.0	ND	ND	ND	ND	N/A
Endothall	50.0	ND	ND	ND	ND	N/A
Glyphosate	50.0	ND	ND	ND	ND	N/A
Hexachlorobenzene	1.0	ND	ND	ND	ND	N/A
Hexachlorocyclopentadiene	5.0	ND	ND	ND	ND	N/A
Methomyl	50.0	ND	ND	ND	ND	N/A
Metolachlor	50.0	ND	ND	ND	ND	N/A
Metribuzin	50.0	ND	ND	ND	ND	N/A
Oxamyl	50.0	ND	ND	ND	ND	N/A
Pichloram	50.0	ND	ND	ND	ND	N/A
Propachlor	50.0	ND	ND	ND	ND	N/A
Simazine	4.0	ND	ND	ND	ND	N/A
Total PCB's	0.5	ND	ND	ND	ND	N/A
Dioxin	0.00003	ND	ND	ND	ND	N/A
1,4-Dioxane (p-Dioxane)	1.0	0.34	ND	1.5	0.07	0.04
Perfluorooctanesulfonic acid	10.0 ¹	2.7	ND	ND	ND	ND
Perfluorooctanoic acid	10.0 ¹	4.8	ND	ND	ND	ND
I GITIQUI DOCLATIOIC ACIO	10.0	-1.0				

NOTE:

ND = NON-DETECT

Well 8 out of service mechanical failure

¹ Units in ng/L or parts per trillion

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

PESTICIDES AND HERBICIDES	MCL	WELL #9	WELL #10A	WELL #11A	WELL #12	WELL #13	WELL #14
(SOC. 1,2)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Alachlor	2.0	ND	ND	ND	ND	ND	ND
Aldicarb	3.0	ND	ND	ND	ND	ND	ND
Aldicarb Sulfoxide	4.0	ND	ND	ND	ND	ND	ND
Aldicarb Sulfone	2.0	ND	ND	ND	ND	ND	ND
Atrazine	3.0	ND	ND	ND	ND	ND	ND
Carbofuran	40.0	ND	ND	ND	ND	ND	ND
Chlordane	2.0	ND	ND	ND	ND	ND	ND
DBCP or 1,2-Dibromo-3-chloropropane	0.2	ND	ND	ND	ND	ND	ND
2,4-D	50.0	ND	ND	ND	ND	ND	ND
Endrin	2.0	ND	ND	ND	ND	ND	ND
1,2- Dibromoethane	0.05	ND	ND	ND	ND	ND	ND
Heptachlor	0.4	ND	ND	ND	ND	ND	ND
Heptachlor Expoxide	0.2	ND	ND	ND	ND	ND	ND
Lindane	0.2	ND	ND	ND	ND	ND	ND
Methoxychlor	40.0	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1.0	ND	ND	ND	ND	ND	ND
Toxaphene	3.0	ND	ND	ND	ND	ND	ND
2,4,5-TP (Silvex)	10.0	ND	ND	ND	ND	ND	ND
3-Hydroxycarbofuran	50.0	ND	ND	ND	ND	ND	ND
Aldrin	5.0	ND	ND	ND	ND	ND	ND
Benzo (a) pyrene	0.2	ND	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) adipate	50.0	ND	ND	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalates	6.0	ND	ND	ND	ND	ND	ND
Butachlor	50.0	ND	ND	ND	ND	ND	ND
Carbaryl	50.0	ND	ND	ND	ND	ND	ND
Dalapon	50.0	ND	ND	ND	ND	ND	ND
DCPA (Dachtal)	50.0	ND	ND	ND	3.8	9.3	9.6
Dicamba	50.0	ND	ND	ND	ND	ND	ND
Dieldrin	5.0	0.054	ND	ND	ND	ND	ND
Dinoseb	7.0	ND	ND	ND	ND	ND	ND
Diquat	20.0	ND	ND	ND	ND	ND	ND
Endothall	50.0	ND	ND	ND	ND	ND	ND
Glyphosate	50.0	ND	ND	ND	ND	ND	ND
Hexachlorobenzene	1.0	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	5.0	ND	ND	ND	ND	ND	ND
Methomyl	50.0	ND	ND	ND	ND	ND	ND
Metolachlor	50.0	ND	ND	ND	ND	ND	ND
Metribuzin	50.0	NĐ	ND	ND	ND	ND	ND
Oxamyl	50.0	ND	ND	ND	ND	ND	ND
Pichloram	50.0	ND	ND	ND	ND	ND	ND
Propachlor	50.0	ND	ND	ND	ND	ND	ND
Simazine	4.0	ND	ND	ND	ND	ND	ND
Total PCB's	0.5	ND	ND	ND	ND	ND	ND
Dioxin	0.00003	ND	ND	ND	ND	ND 0.40	ND 0.04
1,4-Dioxane (p-Dioxane)	1.0	0.08	0.13	0.72	0.2	0.19	0.04
Perfluorooctanesulfonic acid	10.0 ¹	3	ND	ND	ND	2.9	ND
Perfluorooctanoic acid	10.0 ¹	8.7	ND	ND	5.6	6.5	3,8

NOTE:

¹ Units in ng/L or parts per trillion

WATER AUTHORITY OF GREAT NECK NORTH 2022

SOURCE TESTING RESULTS

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE HALOCARBONS (POC's)	MCL (ug/L)		WELL #2A (ug/L)			WELL #9 (ug/L)			TREATED WELLS 2A & 9 (ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
1,1,1,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane	5.0	1.20	ND	0.72	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform		ND	ND	ND	ND	ND	ND	1.20	ND	0.10
Bromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5.0	10.00	3.80	5.96	1.40	ND	0.16	ND	ND	ND
cis-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	1.10	ND	0.09

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE HALOCARBONS (POC's- Continued)	MCL (ug/L)		WELL #2A (ug/L)			WELL #9 (ug/L)			TREATED WELLS 2A & 9 (ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
Dibromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	™ ND
o-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5.0	11.00	2.40	7.08	1.70	ND	0.20	ND	ND	ND
Toluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	80.0	ND	ND	ND	ND	ND	ND	2.30	ND	0.19
trans-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5.0	11.10	4.30	6.83	1.50	ND	0.18	ND	ND	ND
Trichlorofluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

								7	REATED				
VOLATILE			WELL			WELL			WELL			WELL	
HALOCARBONS	MCL		#5			#6			#6			#7	
(POC's)	(ug/L)		(ug/L)			(ug/L)			(ug/L)			(ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
1,1,1,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5.0	ND	ND	ND	2.40	1.70	2.01	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5.0	ND	ND	ND	0.62	ND	0.32	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.3-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.4-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities.

The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter.

Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Well 6 out of service for treatment upgrades

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE	1101		WELL #5			WELL #6		•	TREATED WELL #6)		WELL #7	
HALOCARBONS (POC's- Continued)	MCL (ug/L)		#5 (ug/L)			(ug/L)			(ug/L)			(ug/L)	
(FOCS- COntinued)	(ug/L)	HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
Dibromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	80.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5.0	ND	ND	ND	0.95	0.75	0.87	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2.0	ND	ND	ND	ND	ND_	ND	ND	ND	ND	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month. Well 6 out of service for treatment upgrades

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE HALOCARBONS (POC's)	MCL (ug/L)		WELL #8 (ug/L)		7	TREATED WELL #8 (ug/L)	1		WELL #10A (ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
1,1,1,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichlorotrifluoroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromochloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane		0.70	ND	0.07	0.68	ND	0.09	ND	ND	ND
Bromoform		2.00	ND	0.20	8.60	ND	2.93	ND	ND	ND
Bromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform		0.59	ND	0.06	ND	ND	ND	ND	ND	ND
Chloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane		ND	ND	ND	1.60	ND	0.75	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities.

The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter.

Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE HALOCARBONS (POC's- Continued)	MCL (ug/L)		WELL #8 (ug/L)			TREATED WELL #8 (ug/L)			WELL #10A (ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
Dibromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.0	0.61	ND	0.12	0.71	ND	0.09	ND	ND	ND
Hexachloro-1,3-butadiene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	5.0	2.70	ND	0.63	4.20	ND	0.53	ND	ND	ND
Methylene chloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	10.0	0.60	ND	0.33	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	5.0	0.92	ND	0.18	2.00	ND	0.25	ND	ND	ND
p-Isopropyltoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5.0	10.80	6.80	8.71	ND	ND	ND	ND	ND	ND
Toluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	80.0	ND	ND	ND	10.20	ND	7.86	ND	ND	ND
trans-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

WELL WELL **VOLATILE** WELL #12 #13 #11A **HALOCARBONS** MCL (ug/L) (POC's) (ug/L) (ug/L) (ug/L) LOW AVG HIGH LOW AVG LOW AVG HIGH HIGH ND ND ND ND ND $\overline{\mathsf{ND}}$ ND ND 1,1,1,2-Tetrachloroethane 5.0 ND ND ND ND ND ND ND 5.0 ND ND ND 1,1,1-Trichloroethane ND ND ND ND ND ND ND ND 5.0 ND 1,1,2,2-Tetrachloroethane ND ND ND ND ND 5.0 ND ND ND ND 1,1,2-Trichloroethane ND ND ND ND 0.09 ND 0.53 5.0 ND ND 1,1,2-Trichlorotrifluoroethane ND ND ND ND ND ND ND ND 1,1-Dichloroethane 5.0 ND ND ND ND 1,1-Dichloroethene 5.0 0.74 0.50 0.59 ND ND ND 5.0 ND ND ND ND ND ND ND ND ND 1,1-Dichloropropene ND ND ND ND ND 5.0 ND ND ND ND 1,2,3-Trichlorobenzene ND ND ND ND ND ND ND 5.0 ND ND 1.2.3-Trichloropropane ND ND ND ND ND 5.0 ND ND ND ND 1,2,4-Trichlorobenzene ND ND ND ND ND ND ND 1,2,4-Trimethylbenzene 5.0 ND ND ND ND ND 1,2-Dichlorobenzene 5.0 ND ND ND ND ND ND 5.0 ND ND ND ND ND ND ND ND ND 1,2-Dichloroethane ND ND ND ND ND ND ND ND ND 1,2-Dichloropropane 5.0 ND ND ND ND ND ND ND 5.0 ND ND 1.3.5-Trimethylbenzene ND ND ND ND ND 5.0 ND ND ND ND 1.3-Dichlorobenzene ND ND ND ND ND ND ND 1,3-Dichloropropane 5.0 ND ND ND ND ND 1,4-Dichlorobenzene 5.0 ND ND ND ND ND ND 5.0 ND ND ND ND ND ND ND ND ND 2.2-Dichloropropane ND ND ND ND ND ND ND 5.0 ND ND 2-Chlorotoluene ND ND ND ND ND 5.0 ND ND ND ND 4-Chlorotoluene ND ND ND ND ND ND ND 5.0 ND ND Benzene ND ND ND ND ND ND 5.0 ND ND ND Bromobenzene ND ND ND ND ND Bromochloromethane 5.0 ND Bromodichloromethane ND ND ND ND ND ND ND ND ND Bromoform ND ND ND ND ND ND ND 5.0 ND ND Bromomethane ND ND ND ND ND ND ND 5.0 ND ND Carbon tetrachloride ND ND ND ND ND ND 5.0 ND ND ND Chlorobenzene ND ND ND ND 0.27 Chlorodifluoromethane 5.0 ND ND ND 0.77 ND ND Chloroethane 5.0 ND Chloroform ND ND ND ND ND ND 5.0 ND ND ND ND Chloromethane 5.50 ND 0.58 ND 3.67 ND 11.90 5.0 ND ND cis-1.2-Dichloroethene ND ND ND ND ND 5.0 ND ND ND ND cis-1,3-Dichloropropene ND ND ND ND ND ND ND ND ND Dibromochloromethane

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE HALOCARBONS	MCL		WELL #11A			WELL #12			WELL #13	
(POC's- Continued)	(ug/L)		(ug/L)			(ug/L)			(ug/L)	
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG
Dibromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloro-1,3-butadiene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
m&p-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-tert-butyl ether	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
n-Propylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
o-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
tert-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5.0	2,50	0.76	1.34	2.10	ND	0.69	0.94	ND	0.08
Toluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Total Trihalomethanes	80.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5.0	ND	ND	ND	3.00	ND	1.00	1.40	ND	0.12
Trichlorofluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

WATER AUTHORITY OF GREAT NECK NORTH 2022

SOURCE TESTING RESULTS

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE		WELL TREATED WELLS 12, 13 & 14									
HALOCARBONS	MCL		#14		AIR S	STRIPPE	₹ - <i>A</i>	AIR STRIPPER - B			
(POC's)	(ug/L)		(ug/L)			(ug/L)			(ug/L)		
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG	
1,1,1,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,1-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2-Trichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1,2-Trichlorotrifluoroethane	5.0	0.53	ND	0.04	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,3-Trichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3,5-Trimethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,3-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2,2-Dichloropropane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
2-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
4-Chlorotoluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Benzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromochloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromodichloromethane		ND	ND	ND	ND	ND	ND	ND	ND	ND	
Bromoform		ND	ND	ND	0.95	ND	0.12	1.60	ND	0.42	
Bromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon tetrachloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorobenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chlorodifluoromethane	5.0	0.51	ND	0.04	ND	ND	ND	ND	ND	ND	
Chloroethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloroform		ND	ND	ND	ND	ND	ND	ND	ND	ND	
Chloromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
cis-1,2-Dichloroethene	5.0	11.40	ND	3.30	ND	ND	ND	ND	ND	ND	
cis-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Dibromochloromethane		ND	ND_	ND	0.51	ND	0.04	0.91	ND	0.12	

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities. The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter. Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not, Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

VOLATILE			TREATED WELLS 12, 13 & 14									
HALOCARBONS	MCL		#14		AIR S	STRIPPEI	R - A	AIR STRIPPER - B				
(POC's- Continued)	(ug/L)		(ug/L)			(ug/L)		(ug/L)				
		HIGH	LOW	AVG	HIGH	LOW	AVG	HIGH	LOW	AVG		
Dibromomethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Dichlorodifluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Ethylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Hexachloro-1,3-butadiene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Isopropylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
m&p-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methylene chloride	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Methyl-tert-butyl ether	10.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
n-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
n-Propylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
o-Xylene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
p-Isopropyltoluene		ND	ND	ND	ND	ND	ND	ND	ND	ND		
sec-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Styrene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
tert-Butylbenzene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Tetrachloroethene	5.0	1.90	ND	0.70	ND	ND	ND	ND	ND	ND		
Toluene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Total Trihalomethanes	80.0	ND	ND	ND	1.49	ND	0.15	2.51	ND	0.53		
trans-1,2-Dichloroethene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
trans-1,3-Dichloropropene	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Trichloroethene	5.0	2.90	ND	0.92	ND	ND	ND	ND	ND	ND		
Trichlorofluoromethane	5.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		
Vinyl chloride	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND		

NOTES:

The elevated levels of Tetrachloroethene are removed by air stripping at our Water Mill Lane and Weybridge pumping facilities.

The volatile organic chemicals are tested quarterly at each well except when a well has not been used during the respective quarter.

Volatile organic chemicals will be sampled at least once per year regardless if a well is used or not. Wells #2A, #6, #8, #9, #12, #13 and #14 raw water and treated water are tested for organic chemicals on a monthly basis when in service during the respective month.

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code

CHLORIDES	HIGH	LOW	AVG
WELL # 2A	62.0	21.5	43.7
WELL # 5	127.0	53.3	94.8
WELL#6	39.5	32.7	36.5
WELL#7	31.0	10.0	24.2
WELL#8	70.9	64.2	67.2
WELL#9	92.8	59.8	79.3
WELL # 10A	27.7	19.4	23.9
WELL # 11A	10.9	7.9	9.3
WELL # 12	54.9	22.5	39.2
WELL # 13	109.0	63.1	91.7
WELL # 14	60.7	6.7	27.0

WATER AUTHORITY OF GREAT NECK NORTH 2022 SOURCE TESTING RESULTS FOR RADIONUCLIDES

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the new York State Sanitary Code, Samples were taken duing the 1/1/2020 - 12/31/2022 sampling period.

ANALYSIS CATEGORY	MCL (pCi/L)	WELL #2A (pCi/L)	WELL #5 (pCi/L)	WELL #6 (pCi/L)	WELL #7 (pCi/L)	WELL #8 (pCi/L)	WELL #9 (pCi/L)	WELL #10A (pCi/L)	WELL #11A (pCi/L)	WELL #12 (pCi/L)	WELL #13 (pCi/L)	WELL #14 (pCi/L)
Gross Alpha	15.0	0.541	1.08	-0.383	-0.457	oos	1.29	0.316	0.027	0.113	1.410	0.467
Gross Beta	4,0	0.976	1.61	2.23	0.297	oos	1.35	2.02	0.762	1.190	2.250	1.000
Radium 226	5.0	0.265	0.285	0.82	0.229	oos	0.153	0.209	0.481	0.142	0.0701	0.445
Radium 228	(Combined Radium 226/228)	0.627	0.63	0.557	0.0228	oos	1.12	1.46	1.150	1.400	0.744	0.666

NOTES REFLECTING THE NASSAU COUNTY DEPARTMENT OF HEALTH MONITORING REQUIREMENTS REGARDING RADIONUCLIDES:

Gross Alpha particle activity measurement may be substituted for:

- * Radium 226 if Gross Alpha is less than or equal to 5 pCi/L.
- * Uranium if Gross Alpha is less than or equal to 15 pCi/L.

Gross Alpha Substitution for Determining Monitoring Frequency

- 1. If the reported Gross Alpha result is less than 3 pCi/L, substitute one half the reported Gross Alpha result for the Ra-226 and /or Uranium value.
- 2. If the reported Gross Alpha result is greater than or equal to 3 pCi/L, use the reported Gross Alpha result for the Ra-226 and /or Uranium value.
- 3. If the reported Gross Alpha result is reported as a negative value, use zero (0) reported Gross Alpha result for the Ra-226 and/or Uranium value.

Gross Alpha Substitution for Determining Monitoring Frequency

- 1. Gross Alpha If the reported Gross Alpha result is less than 3 pCi/L, use zero as a result for the Gross Alpha value.
- 2. Ra-226 If the reported Ra-226 value is less than 1 pCi/L, use zero as a result for the Ra-226 value.
- 3. Ra-228 If the reported Ra-228 value is less than 1 pCi/L, use zero as a result for the Ra-228 value.
- 4. Uranium If the reported Uranium value is less than 1 ug/L, use zero as a result for the Uranium value.

Nassau County Health Department Monitoring Requirements state that 1 sample per well must be taken every 3 years when the monitoring results are less than or equal to the MCL. The monitoring period for 3 years is 1/1/2017 - 12/31/2019, Quarterly Sampling shall be conducted at each well when the monitoring results are above the MCL. A MCL violation is based on a running annual average of 4 consecutive quarters. A well can revert to a 3-year cycle once 4 consecutive quarters of monitoring are completed and all sample results are below the MCL.

Next 3 year period for Radionuclide Sampling is expected to be 1/1/2020 - 12/31/2022.

WATER AUTHORITY OF GREAT NECK NORTH 2022 DISTRIBUTION SYSTEM TESTING RESULTS

Supplement to the 2022 Annual Drinking Water Quality Report as required by part #5 of the New York State Sanitary Code

PHYSICA	L							VOLATILE							VOLATILE						
(PHY. 1)		MCL	MAX	MIN	AVG	No.	FQ.	HALOCARBONS	MCL	MAX	MIN	AVG			HALOCARBONS	MCL	MAX	MIN	AVG		
Turbidity						4	SA	(POC's)	(ug/L)	(ug/L)	(ug/L)	(ug/L) I	No.	FQ.	(POC'S)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	No.	FQ.
Color	*					4	SA	1,1,1,2-Tetrachloroethane	5	ND	ND	ND	4	SA	n-Butylbenzene	5	ND	ND	ND	4	SA
Odor	*					4	SA	1,1,1-Trichloroethane	5	ND	ND	ND	4	SA	n-Propylbenzene	5	ND	ND	ND	4	SA
Temperati	ure (°C)					4	SA	1,1,2,2-Tetrachloroethane	5	ND	ND	ND	4	SA	o-Xylene	5	ND	ND	ND	4	SA
* Standard and Results are Measured in UNITS					1,1,2-Trichloroethane	5	ND	ND	ND	4	SA	p-Isopropyltoluene	5	ND	ND	ND	4	SA			
								1,1,2-Trichlorotrifluoroethane	5	ND	ND	ND	4		sec-Butylbenzene	5	ND	ND	ND	4	SA
								1,1-Dichloroethane	5	ND	ND	ND	4	SA	Styrene	5	ND	ND	ND	4	SA
CORROS	IVITY	MCL	MAX	MIN	AVG			1,1-Dichloroethene	5	ND	ND	ND	4	SA	tert-Butylbenzene	5	ND	ND	ND	4	SA
(COR. 1)			(mg/L)	(mg/L)	(mg/L)	No.	FQ.	1,1-Dichloropropene	5	ND	ND	ND	4		Tetrachloroethene	5	ND	ND	ND	4	SA
Calcium H	Hardness		81.2	59.7	66.45	4	SA	1,2,3-Trichlorobenzene	5	ND	ND	ND	4	SA	Toluene	5	ND	ND	ND		SA
Langelier	Index		-1.04	-0.47	-0.6525	4	SA	1,2,3-Trichloropropane	5	ND	ND	ND	4	SA	trans-1,2-Dichloroethene	5	ND	ND	ND	4	SA
pΗ			7.9	7.5	7.6	4	SA	1,2,4-Trichlorobenzene	5	ND	ND	ND	4	SA	trans-1,3-Dichloropropene	5	ND	ND	ND	4	SA
Total Alka	linity		84.4	60.4	67.4	4	SA	1,2,4-Trimethylbenzene	5	ND	ND	ND	4	SA	Trichloroethene	5	ND	ND	ND	4	SA
	solved Solids		242	172	215.75	4	SA	1,2-Dichlorobenzene	5	ND	ND	ND	4	SA	Trichlorofluoromethane	5	ND	ND	ND	4	SA
Total Hard			143	113	123.5	4	SA	1,2-Dichloroethane	5	ND	ND	ND	4	SA	Vinyl chloride	2	ND	ND	ND_	4	SA
Inchines III								1,2-Dichloropropane	5	ND	ND	ND	4	SA							
								1,3,5-Trimethylbenzene	5	ND	ND	ND	4	SA	INORGANIC	MCL	MAX	MIN	AVG		_
DISINFEC	CTION	MCL	MAX	MIN	AVG			1,3-Dichlorobenzene	5	ND	ND	ND	4	SA	(IOC.1,2)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	No.	FQ.
BY-PROD		(ug/L)	(ug/L)	(ug/L)	(ug/L)	No.	FQ.	1,3-Dichloropropane	5	ND	ND	ND	4	SA	Antimony	0.006	ND	ND	ND	4	Α
Total Triha	alomethane		1.8	ND	1.08	6	Α	1,4-Dichlorobenzene	5	ND	ND	ND	4	SA	Arsenic	0.01	ND	ND	ND	4	Α
	acetic Acid		ND	ND	ND	2	Α	2,2-Dichloropropane	5	ND	ND	ND	4	SA	Barium	2	0.032	0.015	0.2125	4	Α
								2-Chlorotoluene	5	ND	ND	ND	4	SA	Beryllium	0.004	ND	ND	ND	4	Α
								4-Chlorotoluene	5	ND	ND	ND	4	SA	Cadmium	0.005	ND	ND	ND	4	Α
MICROBI	OLOGICAL							Benzene	5	ND	ND	ND	4	SA	Calcium	N/A	32.5	23.9	26.6	4	Α
(MIC.)		MCL =	Non De	etect				Bromobenzene	5	ND	ND	ND	4	SA	Chloride	250	60.7	39	50.225	4	Α
	samples were tested. T				iform samples.			Bromochloromethane	5	ND	ND	ND	4	SA	Chromium	0.1	ND	ND	ND	4	Α
			•					Bromodichloromethane		ND	ND	ND	6	SA	Copper	1.3	0.021	0.003	0.0111	4	Α
1								Bromoform		1.0	ND	0.61	6	SA	Fluoride	2.2	0.11	ND	0.0275	4	Α
								Bromomethane	5	ND	ND	ND	4	SA	Free Cyanide	0.2	ND	ND	ND	4	Α
								Carbon tetrachloride	5	ND	ND	ND	4	SA	Iron	0.3	ND	ND	ND	4	Α
NOTES:								Chlorobenzene	5	ND	ND	ND	4	SA	Lead	0.015	ND	ND	ND	4	Α
	ne New York State Depa	rtment of	Health red	commends th	nat Sodium not	exceed		Chlorodifluoromethane	5	ND	ND	ND	4		Magnesium	N/A	15	12.5	13.825	4	Α
	severely restricted sodiu						diets	Chloroethane	5	ND	ND	ND	4	SA	Manganese	0.3	ND	ND	ND	4	Α
	: The primary Action Le							Chloroform		ND	ND	ND	6	SA	MBAS	N/A	ND	ND	ND	4	Α
	,							Chloromethane	5	ND	ND	ND	4	SA	Mercury	0.002	ND	ND	ND	4	Α
								cis-1,2-Dichloroethene	5	ND	ND	ND	4	SA	Nickel	N/A	0.00054	ND	0.00014	4	Α
								cis-1,3-Dichloropropene	5	ND	ND	ND	4	SA	Selenium	0.05	ND	ND	ND	4	Α
SYMBOLS USED IN THIS REPORT				Dibromochloromethane		8.0	ND	0.47	6	SA	Silver	0.1	ND	ND	ND	4	Α				
	Frequency							Dibromomethane	5	ND	, ND	ND	4	SA		See Notes	29.6	20.7	24.625	4	Α
	Maximum Allowable Co	ntaminant	Level					Dichlorodifluoromethane	5	ND	ND	ND	4	SA	Sulfate	250	29.3	22.3	24.85	4	Α
	Not Applicable							Ethylbenzene	5	ND	ND	ND	4	SA		0.002	ND	ND	ND	4	Α
	Non Detect							Hexachloro-1,3-butadiene	5	ND	ND	ND	4	SA	Zinc	5	ND	ND	ND	4	Α
	Number of sample teste	ed						Isopropylbenzene	5	ND	ND	ND	4	SA	Ammonia	N/A	ND	ND	ND	4	Α
1	Semi Annually							m&p-Xylene	5	ND	ND	ND	4	SA		10	2.5	1.9	2.1	4	SA
1	Micrograms per Liter (p	arts per bi	llion)					Methylene chloride	5	ND	ND	ND	4		Nitrites	1	ND	ND	ND	4	SA
	Milligrams per Liter (par		200					Methyl-tert-butyl ether	10	ND	ND	ND	4	SA	Perchlorate	See Notes	ND	ND	ND	4	Α